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MARTINGALE METHODS IN STOCHASTIC CONTROL

M.H.A.  Davis

Abstract

The5 martingale treatment of stochastic control problems is based on
the idea that the correct formulation of Bellman ’s “principle of optimality”
for stochastic minimization problems is in terms of a submartingale inequal-
ity : the “value function” of dynamic programming is always a snbmartingale
and is a martingale under a particular control strategy if and only if thc-’~t
strategy is optimal . Local conditions for optimality in the form of a mini-
nium principle can be obtained by applying Meyer ’s submartingale decomposition
along with inartingale representation theorems; conditions for existence of an
optimal strategy can also be stated.

This paper gives an introduction to these methods and a survey of the
results that have been obLained so far, as well as an indication of some
shortcomings in the theory and open problems. By way of introduction we
treat systems of controlled stochastic differential equations, the case for
which the most definitive results have been obtained so far. We then outline
a gei~eral semimartingale formulation of controlled processes, state someoptimality conditions and indicate their application to other specific cases
such as that of controlled j ump processes. The martingale approach to so~r~e
related problei~s — optimal stopping , impulse control and stochn~.tic d i f f e ren-
tial games - will also be outlined.

Paper presented at the Workshop on Stochastic Control Theory and Stochastic
Differential Systems, University of Bonn, January, 1979. Proceedings to be
published in the Springer-Verlag Lecture Notes in Control and Systems Sci-
ences Series, edited by M. Kohlmann.
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1. INTRODUCTION

The status of conti nuous—time stochastic control theory ten years ago is ad-

mirably suxni~arized in Fleming’s 1969 survey paper (40]. The main results, of which

a very brief outline will be found in §2 below and a complete account in the book

(41), concern control of cçmpletely-observable diffusion processes, i.e. solutions

of stochastic differential equations.r Formal application of Bellman ’s “dynamic
programming ” idea quickly leads to the “Bellman equation” (2.3), a quasi-linear para-

bolic equation whose solution, if it exists, is easily shown to be the value func-

tion for the control problem. At this point the probabilistic aspects of the pro-

blem are finished and all the remaining work goes into finding conditions under

which the Bellman equation has a solution. The reason why dynamic programming is a

fruitful approach in stochastic control is precisely that these conditions are so

much weaker than those required in the deterministic case. As regards problems

with part ial observation the best result was Wonham ’ s formulation of the “ separation

theorem” (78) which he proved by reformulating the problem as one of complete ob-

servations , with the “ state ” being the conditional mean estin~ato produced by the
}~alma~ f i l ter; see §6 below .

* Work supported by the U . S .  Air l’orce Off ice  of ~ponsorc’d Re~ c~arch unch~r
Gran t AFOSR 77-32~ l and by the Department of Energy under Contract lX — 7 6 - A - O i— 2 2 ~~5.

I
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The dyi~~mie progrriniai ng approach , while successful in m~iiy applications, suf-

fers from many limitati ons. An iinmediaLe one is that the controls have to be smooth

functions of the state in order that the resulting stochastic differential equation

(2.1) have a solution in the Ito sense. This rules out, for example, “bang—bang”
controls which arise naturally in sonic applications (e.g. 13]). Thus a weaker for-

mulation of the solution concept seems essential for stochastic control; this was

provided by Stroock and Varadhan (71] for Markov processes and by various forms of

measure transformations, beginning with the Girsanov Theorem (43 ],  for more general

stochastic systems; these are outlined in §3. But even with the availability of

weak solution concepts it seems that the Bellman equation approach is essentially

limited to Markovian systems and that no general formulation of problems with

partial observations is possible (A Bellman equation for partially observed diffus-

ions was formally derived by Mortensen [65) , but just looking at it convinces one
that some other approach must be tried) .

Since 1969 a variety of differen t approaches to stochastic control have been

investigated , among them the following (a very partial list) . Kry lov (51] has stud-

ied generalized solutions of the Bellman equation ; methods based on potential theory

(5] and on convex analysis [7] have been introduced by Bisinut; necessary conditions

for optimality using general extr~ma1 theory have been obtained [44) by Hauss mann; a

reformulation of dynastic programming in terms of nonlinear semigroups has been given

by Nisio (66]; variational inequality techniques h ave been introduced by Bensoussan

and Lions [4], and computational methods systetaatically developed by }~ushner 154].
This survey outlines the so—called “martingale approach” to stochastic control . 

-

It is based on the idea of formulating Bellman ’s “principle of optimality ” as a

subanar tingate inequality and then using Meyer’s submartingale decomposition [63] to

obtain local conditions for optimality. This is probably the most general form of

dynastic programming and applies to a very general class of controlled processes, as 
-
-

outlined in §5 below. However, more specific results can be obtained when more

structure is introduced , and for this reason we treat in some detail in §~4,6 the

case of stochastic differential equations,. for which the best results so far are

available. Other specific cases are outlined in §7.

I have attempted to compile, in 59, a fairly complete list of references on

this topic and related subjects . Undoubtedly this list will suffer from important

omissions, but readers have my assurance that none of these is intentional. It

should also be mentioned that no systematic coverage of xnartingale representation

theorems has been attempted , although they are obviously gerniane to the subject.
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2~. CONTROL OF DIFFUSION PROCESSES

To introduce the connection between dynamic programming and submartingales , let

us consider a control problem where the n-dimensional state process x~ satisfies the

Ito stochastic differential equation

(2. 1) dx
~ 

= f ( t , x~ , u
~

)dt + c(t , x~
)dw

~

xo = ~ e R ~

Here w~ is an n-dimensional Brownian motion and the components of f and 0 are C
1

functions of x, u, with bounded derivatives. The control u~ iS a feedback of the

current state, i.e. u~ = u(t, x
~
) for some given function u(t, x) taking values in

the control set U. If u is Lipschitz in x, then (2.1) is a stochastic differential

equation satisfying the standard Ito conditions and hence has a unique strong solution

x . The cost associated with u is thent 
fT

J(u) = E [,J c(t, x~, u~
)dt + ~(x ) ]

o T

where T is a fixed terminal time and c, ~ are, say , bounded measurable functions.

The objective is to choose the function u(,~ ) so as to minimize J(u). An extensive

treatment of this kind of problem will be found in Fleming and Rishel’s book [41 ).

Introduce the value function

(2.2) V(t, x) = i~f E(t x) if c(s , x
~~. u )ds +

Here the subscript (t , x) indicates that the process x starts at x~ = x, and the

infimun is over all control functions restricted to the interval [t, T]. Formal ap-

plication of Bellman ’s “principle of optimality” together with the differential for-

mula suggests that V should satisfy the I3eLZman equation:

(2.3) Vt + 1/2 E (cYcY ’ ) . , . V + rn~~ [V’ f(t, x, u) + c(t ,x,u ) ]  = 0
1,3 ij

- (t , x) 8 ( 0 , T [ x R
(2. 4) V(T , x) = IZ (x) , XCR

n

(V~ = av/at etc., and V
t
, V etc. are evaluated at (t, x) in (2.3)). There is a

“verification theorem” [41 ,5 VI 41 which states that if V is a solution of (2.3),

(2.4) and u0 is an admissible control with the property that

V’(t,x) f ( t ,x,u°(t,x)) + c(t,x,u°(t,x)) = in~~ [V ’(t,x) f(t,x,u) + c ( t , x , u ) ]

then u° is optimal. Conditions under which a solution of (2.3), (2.4) is guaranteed

will be found in [4 1 , 5 VI 6]. Notable among them is the uniform el l i p t ~”i~-y condi-

tion: there exists K>O such that

(2.5) E (00 ’).. f. > K ~ 
~2

for all ~~ R~. This essentially says that noise enters every component of equatIon

(2. 1), whate ver the c~ordinatc system.
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Let us ref ormulate these results in martingale terms, supposing the conditions

are such that ( 2 . 3 ) ,  (2 .4 )  has a solution with suitable growth properties (see below).

For any admissible control function u and corresponding trajectory x~ define a process

as follows:t 
ft

U I(2.6) M
t =j  c(s , x , u )ds + v(t, x

~
)

0 
S

Note that M~ is the minimum expected total cost given the evolution of the process
up to time t. Expanding the function V(t , x

~
) by the Ito rule gives

(2.7)  M~ = V ( O ,~ ) +f [V
~ 
+ 1/2 EWc ’)~ . Vx~x~ + V 1 f ’1 + c)ds +fV Gdw

where f
U

(t , x) = f(t, x, u(t, x)). But note from (2.3) that the integrand in the

second term of (2.7) is always non—negative. Thus this term is an increasing ~rocecs.

If u is optimal then the integrand is identically zero. Assuming that the function

V is such that the last term is a martingale, we thus have the following result:

(2.8) For any admissible u, M~ is a submartingale and u is optima l i f  and only
if 1< is a niart ingal e.

The intuitive meaning of the submartingale inequality is clear: the difference

E[M~ I x  r(S] -

is simply the expected cost occasioned by persisting in using the non-optimal control

over the time interval [s, t) rather than switching to an optimal control at time s.

The other noteworthy feature of this formulation is that an optimal control is con-

structed by minimizing the Ha’niltonian

H(t,x,V ,u) — V’ f(t,x,u) + c(t,x,u)

and, conveniently, the “adjoint variable” V is precisely the function that appears

in the integrand of the stochastic integral term in (2.7).

Abstracted from the above problem, the “martingale approach” to stochastic con-

trol of systems with complete observations (i.e. where the controller has exact

knowledge of the past evolution of the controlled process) consists of the following

steps:

1. Define the value function V
t 
and conditional minimal cost processes M~ as

in (2.2), (2.6)

2. Show that the “principle of optimality” holds in the form (2.8)

3. Construct as optimal policy by minimizing a Hamiltonian , where the adjoirit

variable is obtained from the intcgran~ in a stochastic integral represen—

tatiO~ 
of the martingale component in the decomposition of the submartingale

M~ .

In evaluating ~ihe cost cor responding to a control policy u in the above problem ,

all th.-tt i~ required is the ~ample space measurc induced by the x~ process wi th
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control u. It is also convenient to note that the cost can always be regarded as a

terminal cost by introducing art extra state variable x~ defined by

(2.9) — c(t , x~, u
~

)dt + dw~

where w~ is an additional Brownian motion, independent of w~. Then since E w~, = 0

we have

(2. 10) J(u )  = E (x + 
~

(xT) ]  = E [~~( x ,  xT) ]

Let C denote the space of R~~
1— valued continuous functions on [0, T] and (Fe) the

increasing family of a-fields generated by the coordinate functions {x
~~~

} in C. Since
(2. 1), (2 .9) define a process (x~ , x

~
) with a.s. continuous sample functions , this

induces a measure , say ~j ,  on (C, FT
) and the cost cart be expressed as

.1(u) =f ~~~~~~~~~~~ XT) 
~~~~~~~~~~

x )

It turns out that each u is absolutely continuous with respect to the measure u

induced by (x , x
~

) with f c E 0. Thus in its abstract form the control problem
has the following ingredients:

C i )  A probability space (c2 , 
~T’ ~~

(ii) A family of measures (ji , u€U) absolutely continuous with respect to
(or , equivalently, a family of positive random variables (~~) such that

E £ = 1 for each u€lJ)
.(iii) An Fr-measurable random variable ~

The problem is then to choose uGtJ so as to minimize E~~ = E(~~~~J .  In many cases it
is possible to specify the Radon-Nikodyxn derivative directly in order to achieve

the appropriate sample-space measure . We outline this idea in the next section before
returning to control problems in section 4.

3. ABSOLUTELY CONTINUOUS TRANSFORMATION OF ~~ASURES

Let (~2 , F , P) be a probability space and(F
~

) 0<~<1 be art increasing family of
sub—a-fields of F such that 

— - -

Ci) Each Ft is completed with all null sets of F

(3 1) ~~~ (E’t ) is right—continuous : F
t 

= F

(iii) F is the completion of the trivial 0—field ~Ø, ~2 }.

(iv )  F1 = F

Suppose Pu is a probability measure such that P <<P. Define

( 3 . 2 )  L
1 

= dP /dP

and

(3.3)  Lt = E [L
i IF

~
1

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  ~~~~~~~~~~~~--- - ~~~~~
--
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then L
t 

i~ a posit ive  martinga ic, EL
t 

= 1, and L = 1 a.s. in view of (3.1) (i i i) .

According to (63 , VI T4] there is a modification of (L
t
) whose paths are right—

continuous with left hand limits (we denote Lt_ = i4~ L ) .  Defi ne

T 1 ‘ inf (t : Lb ” Lt = 0}

T 1 inf{t: L
t

< 1/n }

Then T + , T<T and Meyer shows in [64 , VI ] that L
t
(w) 0 for all t > T(w), a.s.

Suppose (X
e
) is a given non-negative local martingale of (F

t
) with X = l  a.s.

Then X~ is always a superniartingale, since, if S ~S an increasing sequence of

localizing times and s<t, using Fatou ’s lemma we have:

x = u r n  X = u r n  E[X iF I > E [lim inf X IF I E[X f F5 n s~’s n t”s S — a t~’s s t~’s sn n n n
It follows that Ex

t 
< 1 for all t anc~ is a martingale if and only if EX

1 
= 1.

This is relevant below because we will want to use ( 3 . 2 ) ,  (3 .3 )  to define a measure

from a given process L
t 

which, however , is a priori on1y known to be a local

martingale.

Let (M
t

) be a local martingale of (F
t

) and consider the equation

( 3 . 4 )  L
t 

= 1 + f
It was shown by Dol4ans—Dade [28 ] (see also [64 , IV 25], that there is a unique local

martingale (L
t
) satisfying this , and that L

t 
is given explicitly by

-~M
L
t 

= exp (Mt 
— 1/2 <Mc M

C
> J  

s~t ~ 
+ 

S

Here MC is the “continuous part” of the local maitingale Mt (see 1 64 , IV 9) and the

countable product is a.s. absolutely convergent. We denote L
t 
=E (M)

t 
(the “Do l~ans-

Dade exponential”) . -

Suppose tiM > -1 for all (s,w). Then L
t 
is a non—negative local inartingale, and

hence according to the remarks above is a martingale if and only if EL
1 

1. Its

utility in connection with measure transformation lies in the following result, due

to van Schuppen and Wong [69 3 .

(3.5) Suppose EL
1 

= 1 and define a meacure i on (~~~, F1
) by (3.2). Let x be a

local martingale such that the cross—variation process ~X , M> exists. Then

= y~ - <X , M> t is a Pu local martingale.

Note that from the general formula connecting Radon—Nikodym derivatives and

conditional expectations we have
A

(3 .6)  E (X IF ) E [L tXt J F I
u t S 

L 
—

5

and consequently X~ is a P -local martingalc if and only if X
~
L
t 

is a P-local tnartinqai

One readily verifies that this is so wi th X~ defined a~ ahova , using thc general
change of variables formula for sem imartingales [64 , IV 21].

Condit i ons for the CxiStenc~ of ~~~~, M> are given by Yoourp (79 1. I~cca1l tha t

L 
_ _
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the “square bracke ts” process (x , Ml is defined for any pair of local martingales

x , M b y

[X , MJ = <X C , Mc>
t +

Yoeurp defines <X , M> as the dual predictable projection ( in the sense of Dellachcrie

27]) of fX , N] ,  when this exists and gives conditions for this 1 79 , Thm . 1.12].

(This definition coincides with the usual one 1 52] when x and M are locally square

integrable.) In fact a predictable process A such that X-A is a P
a
_local martingale

exists only when these conditions are satisfied (see also [ 6 4 , VI 223).

An exhaustive study of conditions under which EE (N)
1 

= 1 is given by Lepingle

and Memin in [ 57 3 . A typical condition is that tiM > —l arid

(3.7) E [exp (1/2 <MC, M C> 
~ 
(1 + tiM

t
) exp(I+~M

t) 3 <

This generalizes an earlier condition for the continuous case given by Ncvikov

67]. We will mention more specific results for special cases below; see also

references [2),[3), [12), [13), [30], [36], [43), [56], [603, ~77).

Let us now specialize the case where x~ is a Brownian motion with respect to

the 0—fields F
t, 

and M
t 

is a stochastic integral

Mt = I
where c~ is an adapted process satisfying

2(3.8)  J q, ds < a.s.  for each t

Then <MC, MC> = <M , M>
t 

f ~ ~~2 
ds and <M , x >~ f  ~~ds so that

(3.~’) Lt = exp ~~dX - l/2
f 

~~~~2 ds)

and - -

(3.10) Bt:= y.~ -f  ~5ds - 

-

in a Pu
_local martingale (assuming EL1 = 1). Since has continuous paths, <x,x >~

is the sample path quadratic variation of x~ 
( 52] and this is invariant under abso-

lutely continuous change of measure. It follows from (3.10), since the last term

is a continuous process of bounded variation , that
(P

<B , B>t 
~ = <~~ =

and hence tha t B -~s a P —Brownian nO t-~on , in view of the Kunita—Watanabo characteri—t U
zation 1 64,  I I I  102] . This is the original ‘Girsartov theorem ” [ 43). A full account

of it will he found in Ch~ipter 6 of Lipteer and Shiryaev ’s book 1 60). In particular ,

theorem 6.1 of [ 60] gives Novikov ’s condition : EL1 = 1 if ~ satisfies (3.7) and
- f l -

(3.11) E eXp ( 1/2
J ~~

2ds) <
0
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Ihe Girsanr,v theorem is used to define L~~~
}
~ oll ut.ion in stochast i-~ differential

equations. Suppose I : t o , 1] x C R is a bounded non—anticipative functional on

the space of continuous f~ncti.ons and define

4 ( t , w) = f(t, x ( ~~,~~) )

where x~ is a P-Brownian motion as above . Then (3.11) certainly holds and from (3.10)

we see that under measure P the process x~ satisfies

(3.12) dxt = f(t, x)dt +

where B is a P -Brownian motion, i.e. Cx , F , P ) is a “weak solution ” of the sto-
t u t t u

chastic dif Erential equation (3.12). (It is not a “strong ” or “I to” solution since

B does not necessarily generate x; a well-known example of Tsyrelson t 72], ( 60 ,

§4.4.8] shows that this is possible). The reader is referred to [6 0 ] for a compre-

hensive discussion of weak and strong solutions , etc. Suffice it to say that the

main advantage of the weak solution concept for control theory is that there is no

requirement that the dependence of f on x in (3.12) be smooth (e.g., Lipshitz as t.he

standard Ito conditions require) , so that such things as “bang-bang” controls [ 3 1~
1 21] fit naturally into this framework .

4. CONTROLLED STOCHASTIC DIFFERENTIAL EQUATIONS - COMPLETE OBSERVATIONS CASE

This problem , a generalization of that considered in §2 , is the one for which

the martingale approach has reached its most defin itive form , and it seems worth
giving a self-contained outline immediately rather than attempting to deduce the re—

suits as special cases of the general framework considered in ~5. The results below

were obtained in a series of papers: Rishel [6~J, Bene~ [ 2 ] ,  Duncan and Varaiya 130],

Davis and Varaiya [25], Davis 0.6], and Elliott [34].

Let ~2 be the space of continuous functions on [0, 1] to Rn, (w
e
) the family of -

coordinate functions and F~ = cY{w , s < t}. Let P be Wiener measure on (~~~, F~ ) and

F
t 

be the completion of F° . with null sets of F~ . Suppose C : [0, l)x ~2 ~~~~~ is a

matrix-valued function such that

(i) 
~~~~~~

• , ‘) is F
t
_ predictable

(4.1) (ii) Io~~(t s x) o..(t, y)f < K 
~~~~ 

x~ —

(iii) aCt , x) is non—singular for each (t, x) and (0 1(t, x) ) . . ’ < K

(Here K is a f ixed constant, independent of t, i, j).thcn there exists a unique

strong solution to thc stochastic differential equation

dx t = 0(t, x)dw
~
, X0

€R~ given.

Now lot U be a compact metric space , and f: [0 , 1] x C x U -
~ R~ a g iven fu ~~ tion which

is continuous in u€U for f ixed Ct , x) ~ [0 , 1] x C, an F
~
_predictab1

~ 
proc~ ss as a

func t ion of ( t, x) for fixed u~ iJ ,and sa t is f ies
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(4 . 2 )  I f ( t , x , u) I < K(l  4 su~~~x f )

Now let Ube the family of Ft_predictable U-valued processes and for ueU define

L
t
(u) = exp(f (O~~ (s ,x) f (s,x , u ) )’dw - 1/2 1 I 0 ~~f I 2ds)

The Girsanov theorem as given in §3 above generalizes easily to the vector case , and

condition (4.2) implies the vector version of Novikov’s condition (3.10) (see 1 60,

p. 221]). Thus EL
1
Cu ) 1 and defining a measure P

u 
by

dP
= L

1
(u)

we see that under P the process x~ satisfies

(4.3) dx
~ 

= f(t,x,ut
)dt + G(t,x) dw~

where w is a P —vector Brownian motion . The cost associated with ueu is now
t u

(4 .4 )  J ( u ) = E l f  c ( t , x , u
~

)dt  + ~(x 1) ]  
-

where c , ~re bounded measurable functions and c satisfies also the same condition as

f.

It is clear that C must be non-singular if weak solutions are to be defined as

above Ccl. the uniform ellipticity conditions (2.5)), but an important class of

“degenerate” systems is catered for , namely those of the form

1 1 1 2
(4.5) dx

~ 
= f (t ,x

t
, x

~
)dt

(4.6) dx~ f
2
(t,x

~
,x
~
,u
t
)dt + a ( t,x

~
,x
~
)dwt 

-

where ~ is nonsingular and I
1 is Lipschitz in x~ uniformly in (t,x~ ). Then (4.5) has

a unique solution x~ = Xt
(x 2) for each given trajectory x2, and (4.6) can be rewritten

dx~ = f
2
(t
~xt

(x
2
),x

~
,u
~
)dt + o(t ,x~~

(x 2 ) , x
~

)dw
t

which is in the form (4.3). This situation arises when a scalar n ’th—order differen-

tial equation is put into 1st-order vector form.

Fix t€[0,l] and define the conditional remaining cost at time t as

1
= E l f  c

U
(x ,s)ds  +

(Here and below we will write c(x,s,u ) as c
U
Cx ,s) or c

U
, and similarly for f). it

is seen from the formul a (3 .6) tha t ~~ only depends on u restricted to the intcrv~ 1

(t ,1) and since all measures are equivalent the null sets up to which j~ defined

are also control—independent; in fact ~p
U is ~i well—defined element of L

i U2 ,F
~

I P) for

each ueLJ . ~inco is a complete lattice we can define the lattice infimum

ci
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W
t
=

u~ LJ 1LI
~

as an F
~

_measurab 1e random variable. This is the value function (or value proc ess) .
It sat isf ies the following princ ip le of optimality , originally due to Rishel 168]:

for each fixed u€U and 0< t<T<l ,

(4.7) W~ 
~ Ej

*
c
U
dsIF t

] + E
~~

[W 1I F t ]

The proof of this depends on the fact that the family ~~ : u€U] has the “C -lattice

property” : see §5 below . Now -lefine

M~ =fc
u ds +

This has the same interpretation as in (2.6) above. Note that since x
0 is assumed to

be a fixed constant,

= W = i~~ J(v)
(4.8) 

0 0 vtu

El
U I U -M, =J c d s  + ~~x1

) = sample cost’
0

The statement of the principle of optimatlity is now exactly as in (2.8). Firstly
u .  . . u .

(4.7) i~itplies that Mt 
is a P - submartingale for each u. Now if M

t 
is a P —martingale

U U . . . . .
then E M

0 
= E M

1 
which implies u is optimal in view of (4.8), while if u is optimal

then for any t,

= Ejc
t
~ds +

Now for any control we have from (4.7)

ft
W < E [I c’~ds + W0 —  u..b S t

and hence

E ( W
t ~~~ 0

But by definition W~~<~~~ a.s.; thus W~ = a.s. and therefore M~ 
= E ( M ’

~
IF
~
]. So

is a martingale if and only if u is optimal.

- Fix ueU. A direct argument shows that the function t-~EM~ is right continuous,

and it follows from [ 63, VI T4] that M~ has a right-continuous modification . The

conditions for the Meyer decomposition [63, VII T3l] are thus met, so there ex~ ’~~
a unique pr edictable increasing process A~ with A~ = 0 and a martingale N~ such that

= W
0 

+ A~ +

UWe now want to represent the martingale N
t 
as a stochastic integral. If the C—fields

Ft were 
generated by a Brownian motion then this representation would be a standard

result [ 15) , [5 2) , ( 60] ,  but here (4.3) is only a weak solution , so ( W ~~) does no t

necessarily generate (F
e
). Nevertheless it was proved by Fujisaki , Kallianp dnd

Kunita [ 42)  ~~~~ also ( 2 5 1 , [co] ) tha t  a1.lF~~martingales are in fact stochastic in—

i T  
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tegrals of w~, i.c-. there exists an adc~~Led process such that

pt
J ~g~~

2ds <
0

and
(4.9) N~ =f g a d w

U

From the definition of M~ we now have

(4.10) W~ = W0 + f o d
U + A~ - fU d

Now take another control ueU. By definition
“Ut

V I VN = i c d s + Wt J o $

and hence , Using (4.3) and (4.10) we get

(4.11) M~ = W 0 + j g a d w
V 

+ + f ( H ( )  - H ( u ) ) d s

where

(4.12) E C u ) = g f(s,x,u) + c(s,x,u )

Now (4.11) gives a representation of M~
’ as a “special semimartingale ” (= local martin—

gale + predictable bounded variation process) under measure P and it is known
that such a decomposition is uni que [64 ,1v32 ] .  But we know that N”is a submartingale

with decomposition

(4.13) M”~ W0 
+ N~+ A~

so the terms in (4.11), (4.13) must correspond . In particular this shows that

the integral g in (4 .9  ) does not depend on the control u. We can now state some

conditions for optimality.

(4.14) A necessary condition. If u*€ U is optimal then it minimizes
(a.s. dP x dt) the Hcvniltonian H of ( 4 . 1 2 )

Indeed , if u~ is optimal then A~~= 0. Referring to (4.11) with u = u~ we see

that (4.14) is just the statement that the last te~ n in (4.11) is an increasing
process.
(4.15) A suff ic ient  condition for optimali ty.  For a given control u~ , defined th~

—rnartingale

= E
*

[M
~~~JFt

]

Thcn u* ic optimal if for  any other u€U the ~‘r~ceca
t 

*U 
* 

r U UI P + I Cc — c  )ds
‘~- ~ .1 S S -

0

ic a 
~~~ 

-aub~iartin~-~ale.
/ /
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This is evident since then

J(u*) = I~ = E I ~ < E I ~ = 3(u).

We can recast (4.15) as a local condition: since it is a martinga1e,p~ has a

represen tation

= J(u~ ) + j  g5o5dw
5

Now suppose that

(4.16) H
~
(u
t
) 
~
_ Ht

(v) a.e. for all v€U

where H is as in (4.12) but with ~ replacing g. Then a calculation similar to (4.11)

shows that I~ is a local P -submartingale for any ueu; since I~ = J (u *) ,  this

implies that if T is a sequence of localizing times then

E[I~~~~] > J(u~) -

But the process I~ is uniformly bounded and 1
1AT 

-
~ I~ as n-~-~°, so that

E ( I
~~T

] + 3(u). 
-

Thus (4.16) is a sufficient condition for optimal ity and it is easily seen that if
it is satisfied then ~~ M~~and 

~~ 
= g~ , a.e. See [21 ] for an application.

Since the process is defined independen tly of the existence of any optimal

control it seems clear from the above tha t an optimal control should be constructe i

by minimizing the Hamij.tonian (4.12). Under the conditions we have stated , an

implicit function lemma of Bene~ [1 ] implies the existence of a predictable process

such that

Ht
(u
~
) = rn~ j H~ (v) a.e.

Using (4.11) with u = gives

M~ > W0 + f g ~~~ dwV + A~

and hence, taking expectations at t l ,

(4.17) E [A ~~J < J(v) - W
0 -

~~ show u° is optimal it suff ices , according to the criterion (2.8), to show that
0

= 0 a.s. Here we need some results on compactness of the sets of Girsanov cx-

ponentials , due to Benc~ ( 2] and Duncan and Varaiya [30]. Let A be the set of
R~-va1ucd Fe

_predictable processes It satisfying

— I~
(t,x) I < K (l + ~~ x l ), (t ,x)e(o, 1] ~~~~

( thus f’~e.4 for u€U , see (4.2)) and let

D = { 5 ( q )  : ~~A )

,~z- L
- I

_________________________
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where 1 1
= exp ( f  (C

~~~ )’dw — 1/2 f  o~~~~~
dt .~

0 0

then Bene~~’ result is

( 4 . 1 8)  P is a weakly comc ’act ~u~~ et of  L
1

(c~, F , P)  ~~
i-
~~ ~‘o a.s. for aZ - Z c~ p .

Returning to (4.17) we can, in view of (4.8), choose a sequence u € ]  such that

J(u ) W and hence such that for any positive integer N ,n 0 o n 0
(4 .19)  E [ A ~~A N] = E (~5(f

’
~ ) ( A ~~A N)]~~ 0 , n :.

In view of (4.18) there is a subsequence of 6(f’~ 
) converg ing weakly to some peP;

hence from (4.19)

0
E(P (A

U
A N)) = 01 o

and it follows that A~ = 0 a.s. We thus have:

(4. 20) Under the stated conditions~ an optima l policy u°exists , constructed by
minimizing the Hainil tonian ( 4 . 1 2 ) .

Two comments on this result: firstly, it is possible to recast the problem so

as to have a purely terminal cost by introducing an extra state x° as in (2.9), (2.10) .

However it is important not to do this here , since an extra Brownian motion w~ is

introduced as well , and there is then no way of showing that the optimal policy u°

does not depend on w
0 

- i.e. one gets a possibly “randomized” optimal policy this

way. Secondly,  the existence result (4.20) was originally proved in 1 2 ] and (30]

just by using the compactness properties of the density sets. However they were

obliged to assume convexity of the “velocity set” f(t,x,U) in order that the set

D ( U)  = ~~5 ( f
U

) : uCU) be convex (and can then be shown to be weakly closed). Finally

it should be remarked that (4.20) is a much stronger result than anything available

in deterministic control theory , the reason being of course that the noise “smooths

out” the process.

A comparison of (2.3) and(4.l2) shows that the process plays the role of the

gradient V (t ,x
~

) in the Markov case, so that in a sense the submartingale decompo-

sition theorems are providing us with a weak form of differentiation. The drawback

with the martingale approach is of course that while the function V can (in prin-

ciple) be calculated by solving the Bellman equation , the process is only defined

implicitly by (4.9), so that the optimality conditions (-2 .14) (4.15) do not provide

a co;istructiuc procedure for calculating the optimal u°, or for ver i fy ing whe ther ~i

candidate control satisfies the necessary condition (4.1-c). Some progress on this

has been made by HausFmalin (44], bu t it depends on u°(t,x) being a smooth func tion

of xe~2 , which is very restrictive.

Suppose u° is optimal and that the random variable
1

J c(s ,x ,u0 (s ,x ) ) d s  +

~

-
-
--—- -- - -~~~~--~~ . -

.~~ -~~~~~~~—~~~-~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~
--

~~~~~~~~
- -
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is Frechet differentiable as a function of xe); then by the Riesz representation theorem

there is , for each xE~1 an Rn_valued Radon measure such that for y~~2

M~~~(x+y) = M~~ (x)  + f y ( s )  ~~~(ds) + o ( j ~~y J )

- 
[0,1]

Since u° is optimal M~ satisfies

0 i-~t 0
M
U 

= 3(u°) + I g C dw
u

t *10 
S s  5

and Haussmann [45] ( 46] (see also [19]) shows that , under some additional smoothness

assumptions , is given by -

= E 
~~
[ f ).1’(dsi

~
(s ,t)jF

t
)

u J -t,l]

where ‘j’(s,t) is the (random) fundamental matrix solution of the linearized equation

corresponding to (4.3) with u = U
0
. Ths representation g ives , in some cases , an

“adjoint equation ” satisfied by 
~~~ 

along the lines originally shown by Kushner ( ] .

Finally let us remark that in all of the above the state space of x~ is Rn.

Some problems - for example , control of the orientation of a rigid body — are more

naturally formulated with a differentiable manifold as state space. Such problems

have been treated by Duncan (29 ) using versions of the Girsanov theorem etc . due to
Duncan and Varaiya [31) .

5. GENERAL FORMULATION OF STOCHASTIC CONTROL PROBLEMS

The first abstract formulation of dynamic programming for continuous-time stoc1~~s-

tic control problems was given by Rishel [68) who isolated the “principle of opt imality ”

in a form similar to (4.7). The submartingale formulation was given by Striebel [70]

who also introduced the important “C—lattice property.” Other papers formulating

stochastic control problems in some generality are those of Boel and Varaiya [11],

Memin (61] , Elliott(37] ( 38] , Boel and Kohlmann [9 ] [10], Davis and Kohlmann (23)

and Br~inaud and Pietri (14] . 
-

We shall sketch briefly a formulation , somewhat similar to that of (2.7), which

is less general than that of Striebel (70) but sufficiently general to cover all of

the applications considered in this paper.

The basic ingredients of the control problem are

Ci) A probabil ity space (
~~,F,P)

(i i) Two families (F
t

) ,  
~~~ 

(0<t<l) of increasing , right—continuous , com-

pleted sub-a—f i.elds of F, such that y~~C Ft for each t.

(iii) A non—negative F
1—measurable random variable ~~‘.

(iv) A measurable space (U,E )

Cv) A family of con trol processes {yt, O<s<t<l}

Each control process u€Ut is a Y
e
_predictable U-valued fun cti on on ]s ,t] X S~ . The

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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tfamily {U) is assumed to be closed under

restricti.on: ueut u-I eU~ for s<r<t$ ~s,t1 5 — —

concatenation: u€UT, v€Ut=>wQU
t where

S T S

— f u(C ,w) a€]s ,r ]
wW ,w) t v(a,6) ce]t, t]

(5.].)

finite mixing : u,v€Ut, ACY w€U~ where

r u (a , w) , ~€A .
= t v(a,w), weA

C

We denote U U~ (In most cases U will consist of all predictable U-valued processes ,

but (5.1) is the set of conditions actually required for the principle of optimality

below) . A control ueU0 is assumed to determine a measure P on (c2
~

Ft
) which is

- absolutely continuous with respect to such that P = 

~ ‘F 
and such tha t the

t U F 0

assignment is compatible in the sense that if ueU~ , s< t and V = uI [ 0 ]  
(so that

veuS) then p = p . If uelft and X is an F -measurable random variable , then E X0 V U~~~ S t u

denotes expectation with respect to measure P .  We finally assume that E~~’ <~ for

all ueU and the problem is then to choose u€U so as to minimize 3(u) 
~~~~

The value process corresponding to ueU~ is

(5.2) = A E [
~~I Y ~

)

where 
~
A
t~ 

denotes the lattice infimum in L
i
(
~
2I YtI P ) ,  taken over all vCU such that

V I ~~0 t j  
= u. Note that, in contrast to the situation in §4, W~ is in general not

control-independent. We nevertheless have a result analogous to (2.8), namely

(5.3) W~ is a eubmartingale for each u€U and is a martinga le i f  and only if u
is optimal. -

Note that by inclusion and using the compatability condition , for any t > t

A E r~I~- ] = A E [E (
~I~ ] kt —  V ,~~ v t v ,t U V ~t t

so that the first statement of (5.3) is equivalent to the assertion that  A andv, I
E [ . I Y t ] may be interchanged , and according to Striebel (70 ] (see also 126 ] for  a

summary) this is possible if the random variables E [ ~~ j Y )  have the c— ~~ t~~ o ~r~~ :

if v1, v2eU~ then there exis ts v 3E - ’~ such that , w i t h  V . denoting the concatentatic h of

u and v . ,
1

(5.4) [~~~Y~~] < E— 
~~~~~~~~~~~~ 

A E— + c a.s.
3 1 2

Now it is ev i den t tha t under ~‘~~ un~pt ion~ (5.1) the sez (E [ I Y ~
))ha5 th 0—1~~ttice

proper ty , because given v1, v2 as above one o n l y  has to (Ir-fine 
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A = {w E— < E- E
~I~~

]
1 2

and , for T € ] t , l ],

v1(t , w ) ,  weA

v
3
(t,w) =

v
2(T,~~), weA

c

Then (5.4) holds with ~=0.

It is clear from the definition (5.2) that u is optimal if W~ is a P - martingale

while conversely if u is optimal then for any te [O , l]

(5.5) E[W~) = i~~~ 3( v) = 3(u) = Eu L E [
~~

IYt
) )  -

But by the submartingale property E (W~] < E 1W ~] and this together with (5.2) and

(5.5) implies that W
~
=E [

~
(JY

~
) ,  i.e. W~ is a P

u 
-martingale .

Statement (5.3) is a general form of optimality principle but its connection

with conventional dynamic programming is tenuous as there is a different value

function for each control, reflecting the fact that past controls can affect the
expectation of future performance. This is suggestive of Feldbauzn’s “dual control”

idea , namely that an optimal controller will act so as to “acquire information” as

well as to achieve direct control action. -

The postulates of the general model above are not, as they stand , suff ic ient

to endure that there is a single value function if Y~ = F
~ 

(complete information).

Let
dP

(5.6) Lt ( u ) = E [
~~~~j F t

)

Now fix se(0,l] and for s<t<l define

L (u)/L (v) if L (v) > 0
L (u ,v) = 

$ S

1 if L (v) = 0

then L
~

(u i v) is a positive martingale and L(u ,v) = 1. Then the following hypothesis

ensures that there is a process W~ such that W~ = W~ in case Y~ = Ft :

(5.7) For any vC(J, and u
1
,u
2
€U such that u1 = u

21 we have
- 

)s ,i) 1]s ,l]

L
t
(u
1
,v) = L

t
(u
2,

v) for all te ]s ,l)

See [Gl~ Lemma 3.2]. Clearly the densities L
~
(u) of §4 above satisfy (5.7)

A minimum pr inciple  - complete observations case

If we are to use the principle of opt imali ty (f.3) to obtain loccz Z condi t ions

for optimality in the form of a minimum principle it is necessary to be more specif ic

abcu t how the densities L
~~

(u )  are related to the con trols u~U. This is generally

through a transformation of measures as described in 53 above. A general formulation

L 

will be found in nhliott ’s paper [38 ] in this volume, but to in t roduce the idea let



us consider the following rather special set-up.

Suppose Y~ = F
t 

for each t , and let be a given F~_martin~alo wi th  almost

all paths continuous. Now take a function ~ : [O ,13) XU-÷ R such that ~ is a predic-

table process for each uGlJ and continuous in u foi~ each fixed (t ,U)~i , and for uCU let

denote the predictable process q~~(t ,W )  = q (t,oLu(t,u)). We suppose that for each

u€U
El 2

(5.8) E exp (l/2
J 

(~~ ) d<M> ) < ~
0

and that the measure P is defined by
U

U 
= E çfr ’ dM) 1

(see 3). From (3.7), condition (5.8) ensures that is a probability measure and

that P
u ~

P. Now L
t
(u) (defined by (5.6)) satisfies the equation

L
~

(u ) = f u  dM 
-

The uniqueness of the solut ion to this equation shows that condition (5.7) is satis-

fied , and hence that there is a single value process W~ , which can be shown to have

a right-continuous modification [61], assuming the cost function is bounded. Then

for any u€U , W~ has the submartingale decomposition

(5.9) W
t

=
o

+ N
~~

+ A
~

where N~ is a P -martingale and A~ a predictable increasing process. According to

the translation theorem, the process

( 5.10) dM~
a
~ = — -

is a continuous P~_martin~ale. Decompose N~ into the sum

= +

where is in the stable subspace generated by M~ (see [64] )  and is orthogonal

to this stable subspace. There is a predictable process such that

i~ f  g
5
dI4~

Now consider another admissible control v. Using (5.9), (5.10), we see , as in (4.11),

(4.12 ) above that W~ can be written

W~ = W0 + j= 
dM’

~ + f~~ +j (
V 

- q~
”)d<M> +

Now N is a P —rn~ ’~~in-~al e , since the Radon-Nikodym dor iva t ive  E (dP /dP F I is int U • u v U t

the stable subspcice generated by t4~’ (see [ 3 7 ] ,  [3 8 ] )  and hence , by the uni~~~- - ~~~ss

of the semi—martingale  decomposition ( 5 . 9 )  we have

= f .g (~~ 
- 

~~)d<M>5 
+

Since A~ is an inc reas ing  } r ~ cnsS and A~ 0 if u is opt ima), W O have the fo l lowing

— —
~~

- -
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

-- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



minimum principle:

(5.11) i f  u€ U is optima l and v is any adm issible contro l then for almost all w

g
5~~

(s ,w , u
5
) < g

5
(s,w , v

5
) a.e. (d<M> )

In particular if U cons ists of a l l  pred ictable u-va lucd processes then

= rn~xj g~~~(s,w, v)

The importance of this type of result is that no martingale representation

resul t is required , since the “orthogonal martingale” plays no role in the optimal-

ity conditions ( things are somewhat more complicated if the basic martingale m
~ 

is

not continuous) .

Partial observations case
Further progress in the case when 

~ 
F
t 

appears to depend on representation

theorems for Y~ _martin~ales~ although possibly a development similar to the above

could be carzied out. For each ueU the P -submartingale W~ is decomposed into the

sum of a martingale and an increasing process. In Memin ’s paper it is assumed that

all (Y~ 1P)_martingales have a representation as a sum of stochastic integrals with
respect to a continuous martingale and a random measure. It is shown in [48] that a

siin~.lar representation then holds for (Y~~P~)_martin~ales since Using this

some somewhat more specific optimality conditions can be stated , but these do not

lead to useful results as no genuine minimum principle can be obtained . Rather than

describe them we revert to the stochastic differential equation model of §4 for which

better results h ave been obtained.

6. CONTROLLED STOCHASTIC DIFFERENTIAL EQUATIONS WITH PARTIAL INFORMATION

Returning to the problem of §4, let us sc~pose that the state vector x~ is divided

into two sets of components x~ = (y~ ,z1~
) of which only the f irst is observed by the

controller. Define = ~{y, s<t}. Then the class of admissible controls is the

set N of Y
e
_adaPted processes with values in U. The objective is to choose u€N so as

to minimize 3(u) given by (4.4). Following Elliott [34] we will outline a necessary

condition for optimality. Thus we suppose that u*€.V is optimal (and write c~ , E~
instead of c , E~~

, etc.). Let

= E~~[c ~ds + ~ (x
1
) IF t]

and fo r any uE.’ define

N~ f u  + ‘ ) *

Then N~ is an (F~~~~ )_martinga1e and it is easily shown that

(6.1) (1) E
~~

[N
~Jy t

) is a (Y~ ,P~ )_martingale

(ii) (~~~ Y~ ] .~~. ~~ 
[E [tl

~~ i I F ’~~) l Y t J for any uCU and h > 0



F ~~

-

~~~~~~~~~~~~
--— 

~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

As in ~4, we can represent N* as a stochastic integral with respect to the Brownian

motion w~ = w , i.e. there cxists an F
e
_adap ted process g~ such that

(6.2) N*
t 

= ~~ +( g*odw *

Using an argument similar to that of (4.ll)—(4.l2) we see that N~ can be written

(6.3) N
u
t 

= 

~~ 
+f g*a dw~

’ +f 1~H~~(u)ds

where

t~H* (u) = [g *f(s,x,u )  + c(s ,x, U ) ]  — [g *f (s,x,u*) — c(s ,x ,u *) )

It now follows from (6.1) (ii) and (6.3) that
t+h

(l/h )E
*

[E
~~( ~

H*(u)dsjF
t)JY t

] ~ 0
-Ft

A rather delicate argument given in [34] shows that taking the limit as h+O gives

E
*[~

H
~~

(u)
~~
Y
t
] > 0. We thus obtain the following minimum princip]e:

(6.4) Suppose u *eN is optima l and ueN . Then there is a set Tc ( O ,l] of zero

Lebesgue measur e such tha t for t~T

E~ [g~f(t,x,u~) + c( t,x,u
~
)IY t

] < E ~~[g~ f ( t 1x ,u~ ) + c( t,x,u
t
)jY~ ] a.s.

where g~ is the process of (6.2).

This is a much better result than the original minimum principle (theorem 4.2

of [25])since the optimal control minimizes the conditional expectation of a liamil-

tonian involving a single “adjo int process” g*. A similar result (including some

average value state space constraints) was obtained by Haussmann [44) Using the Gir—

sanov formulation together with L.W. Neustadt’s “general theory of extremals.”

It is shown in (39 ] that a sufficient condition for optimality is that an
inequality similar to (6 .4 )  but with E replacing E

~ 
should hold for all admissible u.

The disadvantage of the types of result outlined above is tha t they ignore the

general cybernetic principle that in partially observable problems the conditional

distribution of the state given the observations constitutes an “information state,”

on which control action should be based. In other words, the filtering operation is

not explicitly brought in. Although there is a weil-developeci theory of filtering

for stochastic differential equations (42], [60], it turns out to be remarkably dif-

ficult to incorporate this into the control problem. A look at the “separation

theorem ” of linear control (18], [78], [41], chapter 7] will show why. The separation

theorem concerns a linear stochastic system of the form

(6.5) 
dx

~ 
Ax

~
dt + 

~
(u
~
)dt + Gdw~~

dy
~ = Fx tdt + Rl/2dw~~

where ~~~~~~~ are independent vector Browni.an m o tions , the distribution of the initial

state x
0 

i~ normal , and the coefficient matrices can be time—varying . It is assumed

that GG’ and R are symm etric and stri ct ly positive def i nite , that the controlc. U
t

I, 

-- _ _ _ _



take values in a compact set U and that the function ~ is continuous. The solution

of (6.5) for a given Ye
_adaPted control policy u~ is then defined by standard appli-

cation of the Girsanov technique and the (non-quadratic) cost is given by

3(u) = E [J c(t,x
t,u t)dt +

It is shown in [24] that the conditiona l distribution of x~ g ui~’enz y~ is nor ’na l , with

mean 
~~~

and covariance E.~ given by the Kalman filter equations:

(6.6) ~~~ 
= A

~t
dt + $ ( U t

)dt  + Z
t
F ’R 1”2dv

~

= Ex0

(6.7) = A~ + ZA’ + GG ’ - ZF’R
1
FZ

~~(0) = cov(x
0

)

Here v~ is the normalized innovations process

~~ f

_1/2 
- F~~ds) -

which is a standard vector Brownian motion. Let us denote K(t) = E
~
F’R 112

I and let

n(•,x,t) be the normal density function with mean x and covariance E .~. Now define

e(t,x,u) = f  c(t1~~,u)n(~~ x,t)d~~ , ~ (x) = 
f~~

(~~n (~~x,t)d~
Rn R11

Then the cost J(u) can be expressed as
(1 -

(6.8) J(u) = E [J e(t,
~~~

,u
~
)dt +

U
0

The original problem is thus seen to be equivalent to a “completely observable ’

problem (6.6), (6.8) with “state” (this characterizes the entire conditional dis-

tribution since the covariance Z(t) is non-random). This suggests studying “separated

controls” of the form = 
~
p(t,

~~
) for some given measurable function ~ : [0 , 1] ~~~~ U.

However, such controls are, in general , not ad ’nissible: admissible controls are

fied functionals of y,  whereas the random variable depends on past controls

{u , s<t}. One way round this difficulty- is to consider (6.6)—(6.8) as an independent
problem of the type considered in §4, i .e . ,  to define the solution of (6.6) by Girsanov

transformation on a new probability space, for separated controls u ( t,~~). However

we then run into the fresh di fficulty that weak solutions of (6.6) are only defined

if the matrix K ( t) K ’  (t ) is strictly positive def inite , which cannot happen unl ess
the dimension of y

~ is at least as great as that of x~ 
— a highly artificial condi-

tion. If this condition is met then we can apply (4.17) to conclude that there

exists an optimal separated control , and an extra argument as in [18] shQws that its

cost coincides wi th inf
~€iJ(u). If di.m(y

t
) < dim (x~ ) then some form of approxima tion

must be resorted to.

With thes~ elementary obstacjL- s standing in the way of a satisfac tory martingale

treatment of the s~paration thcorcr.~, it is not surprising that a proper fo~miulation

of information states for  nonJ i.near rrohlerns has not yet b- :-cn given. it is possible
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that the Gi.rsaj~ov solution concept is still too strong to g ive existence of optimal

controls for partially—observable systems in any generality.

7. OTHER APPLICATIONS

This section outlines br iefly some other types of optimization problems to which

martingale methods have been applied. The intention is merely to indicate the mar t in -

gale formulation and not to give a survey of these problems as a whole: most of thorn

have been extensively studied from other points of view and the associated literature

is enormous. Nor is it claimed that the martingale approach is, in all cases , the

most fruitful.

7.1 Jump processes -

A jump process is a piecewise—constant right—continuous process x~ on a probabil-

ity space (Q ,F,P) with values in , say, a complete separable metric space X wi th Borel

a-field S. lt can be identified with an increasing sequence of times ~T} and a

sequence of X-valued random variables 
~
Z
n
} such that

z , te [T ,Tn n n+l
= 

z , t>T,,,
where T = u r n  T and z is a fixed element of X. (Generally T =~~ a.s. in applica-

~ n n
tion.) Jump processes are useful models in operations research (queueing and invcr.-

tory systems ) and optical communication theory, among other areas. Their structu~ e

is analysed ~~ Jacod [47]~ Boel , Varaiya and Wong [121 and Davis (17]. A jump ~r~ —

cess can be thought of as an integer valued random measure p on E = R
+ )< X defir.ec~

by

p ( u ,dt,dz) = 

~ ~~~~~~~ x (w ) ) (dt,dz) -

n , n

where cS is the Dirac measure at eCE. Now let
e

F
t 

= a -(p ( ] 0 , s] ‘< A), s<t, AeS}= aCx , s<t}

and let P be the F
e
_predictable a-field on R

+ )<
~2. A random measure p is predictable

if the process -

(7.1) f  g(w ,s,z) p(w , ds ,dz)
]0 ,t] x x

is predictable for all bounded measurable functions g on (c2XR
4X x , P~ S) .  The fun-

damen tal resul t of Jacod ~47 )  is tha t there is a unique predictable random moasur~
v such that

(7.2) E( f g(s,z ) p ( d s,d z ) )  = E[  f  g( s ,z)v(ds ,c~z)]

for all g as above. ~ is also characterized by the fact th~.t for each AeS, 
\)()O ,t) ~‘A)

is the dual predictable project ion ( in  the sense of Dellach’ ::ie [27  ] )  of p f l o , t ] , A ) ,
i.e. the process

q ( t , A) = p ( ] 0 , t ]  ‘ A) — v ( ] O , t)  )< A)

-

~

-

~ 

-~~~ _ _ _ _ _ _ _ _ _
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is an F
t ~

rnartingale . An explicit construction for V in terms of the distributions

of the (T ,Z ) sequence is given in [2.3]. We will denote by fg dq integrals of

the form (f g  dp - fg clV) where fg dp and fg dv are defined as in (7.1) then

the process

g q ~~ = f  ~~
JO ,t]

is an F~_martingale for a suitable class of predictable integrands g, and the ~cp-

tingale representation theorem ( 12) , [ 17] , (47 ]  states that all F
~

_r
~~

rti:.cj31es are

of this form for some g.

Denote

= vOO ,t) x X)

For each w this is an increasing function of t and evidently the measure it defines

on R+ domina tes that defined by vflO,t] )< A) for any AeS. Thus there is a positive

function n (~j,s,A) such that

(7.3) v (]O,t] ‘<A) = f  n(w,s,A)dA
]0,t]

Owing to the existence of regular conditional probabilities it is possible to choose

n so that it is measurable and is a probability measure in A for each fixed (s,w).

The pair (n ,A)  is called the local description of the process and has the interpre-
tation that is the i~~ c~ rcz~ e-d ju mp rate : roughly , dA P(x +d ~ x j F ] ~nd

fl (W, s,~~) is the ~~~~~~~ n~l ~~~~~~~~~~ of x given tha t x ~ xS S—

Optimization pr~~~le~ s arise when the local description of the process can be

controlled to nea t  some objective. This is normally formulated [11) , [22) ty abso-

lutely continuous change of measure , as in § 3: we start with a “base measure ” P on

(~2,F1
) with respect to which the jump process has a local description (n,A ) and def ine

a new measure P by
U

dP
=

where mU is a (P ,F
~
) martingale. Under 

~u 
the process x~ has a different local des-

cription which can be identified by the translation theorem ( . ). More specifically ,

it is supposed that the admissible controls U consist of F
~
_predictab1e, (U,E)-valucd

processes and that a real—valued measurable function 4 on (R
+
x2 X x ‘<U , p *s*~) j 5

given. Denoting t,w, z) = ~ (t,~j,z,U(t,w ) )  for ueU , ~~ is defined by

u C um (w) = j  ~ (s ,w , z ) a ( w, ds ,dz)
]O , t)x x

The Dolcaris—Dade exponential ( . ) then takes the specific form

E(m
U
) =exp(_f f  

~~‘dn ~~~~~~~~~~~~~~~~~~~~~~~~~~~ f~
u

(T~~~~) f l ( T d z ) )

- C uX 
~ (l—M j  (s ,z)n(s ,dz)) .

s < t X 

—- -~~~~~~~~ -~~~~~~~~~~~~~ —- - -- -~~— -- - ---
~~-- ~~~

--—



where Ac ~~ th e continuous part of A and the second product is taken over the countab lL-

set of s such that  M > 0 and s~ (T1,T2 ,...}. Assuming that EE(M U )
1 

) , x~ is,

under measure P , a jump process with loca . description

A~~ 
f  ( ( 1  + 

~~~ 
fUd ) ( d d )

) O ,t] X x
(7.4)

- ~A fp
U

df l)  n(s,dz)
U ( A )  = A X 

____________

(1 + — 

~~~ ~~~ n(s,dz)x x

See [22] , [ 36) for details of these calculations and condition s under which EE (mu) , =l.

Generally,  only weak conditions on ~ are needed to ensure that is a probability

measure on F for each n and hence on F . If T = ~ a .s .  (P) then extra conditions
T Tn

on can be imposed to ensure that T = a.s. (P) and then P is a probabili ty on

Ft 
for each fixed t; see (77 1.  Let us suppose that the control problem is to choose

u€U so as to minimize

3( u ) = E ~
where ~ is a bounded F

1-measurable random variable. Then the problem is in the

general framework of §5 and furthermore we have a martingale representation theorem

analogous to that of the Brownian case. Thus local conditions for optimality can

be obtained by following the steps of §4.

Suppose u*€U is optimal. Then by the martingale representation theorc~ri there

is an integran g such that

(7.5) E~(~~F~] = J(u*) + f  g(s,z)q* (ds ,dz)
)O ,t] xx

where q* ~~~~~~ and Vk is the dual projection of p under measure P t,, (cf. (7.2)).

Now let ueU be any other control; then we can rewrite ( 7 . 3 )  in the form

(7.6)  E
*

[
~~I F t J = J (u *) + f  g dqU + f  g (dvU 

- dv*)
3O , t] x x  ~o,tj  x x  -

According to the criterion (5.3 ) ,  E~~[c~~F~~] is a P —subrn art ingale , and hence the

last term in (7 .5 )  must be an increasing process. Using ( 7 . 3 )  and the specific

forms of local description provided by ( 7 . 4 ) ,  this statement translates into the

follo~cing result:

( 7 . 7 )  S!~~ec~sc u* is ~~t~; - cz~- , let g hc ~zs in (7 .5) and d~j
’
~nc

h ( t , z , -~ ) = g ( t , z ,w)  — ~A ( t , w) f g ( t , ~~~) n ( t , d ~~u~)

T1:~n fo r a1r~oet il l  w

f h ( t ,z )~~(t ,~~, u *) n ( t , d z )  = rn~ j~ fh ( t , z)~~(t , z , u ) n ( t ,d z) a . e .  (dA
n
) 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _



Thus , as in (4.14), the optimal control minimizes a “Hamiltonian . ” A suf f ic ien t  con—

dition for optima.lity similar to (4. 15) can also be obtained . In the litera—

ture [12], ( 2 2 ] ,  (77 ]  various forms of Hamiltonian appear , depending on the

nature of the cost funct ion and the funct ion ~~. In (77] an existence theorem along

the lines of (4 . 20)  is obtained; however this only holds under very restrictive as—

suxnptions , related to t h e  absolute continui ty of the measures. In the Brownian case

all the measures F a~o mut a j absolutely continuous under very natural  condit ions ,

and this is crucial in the proof of the existence result, as is seen in (4.18), (4.19).
In the jump process context mutual absolute continuity is very unnatural , but one is

apparently obliged to insist on it if an existence result is to be obtained .
Finally, let us mention some other work related to the above. Optimality condi-

tions for jump processes are obtained by Kohlmann [50] using Neustadt’s extremal

theory in a fashion analogous to Haussmann ’s treatment of the Brownian case (44).

Systems with both Brownian and jump process disturbances are deal t with in Boel and

Kohlmann [9 ] ,  (10) (based on a martingale representation theor em of Elliott [ 33] )

and Lepeltier and Marchal [ 58] . The survey [13] by Bremaijd and Jacod contains an

extensive list of references on martingales and point processes.

7.2 Differential games [32), (35], [73), [74], (75], [76)

The set—up here is the same as that of ~4 except that we suppose U 
= U.xU2x.. .xUN

where each U. is a compact metric space. Then U = U
1
x.. .XU

N 
where U. is the set of

F
e
_predictable U.—valued processes, and we assume that each u~eU. is to be chosen by

a p layer i with the objective of minimizing a personal cost

J .(u) = J . ( u 1.. .uN ) = E If  c.(s,x ,u ) ds +

~c. and 
~~~

. 2atisfy the same conditions as c,~ of §4) . Thus each player is assumed

to have perfect observations of the state process x
t 

* N*Various solution concepts are available for this game [76] : u~ (U ,...u ) is

- a Nash equilibrium if there is no i and U’€U~ such that

J.(u*) 
-

- efficient if there is no ueU such that
J . ( u) < J . (u *) for all i
1 1

— in the core if there is no subset S C (1,2... ,N)and u€U such that
3 (v)  < J . (u *) i€S

1~ . 1 . i i*where v1 = u1 for i€S and v = u for i~ S.

Thus an equilibrium point is one f rom which it does not pay any p layer  to dcv iat ~
unil~~t er a l l y,  a s trategy is e f f i c i en t  if no strategy is better for  everyboJv and a

s t ra tegy is in the core if no coalit ion can act j o t ht ly  to im prove i ts  lot. Ev iden t ly

a core strat egy is both ef f i c i en t  and an equi l ibrium , but: equilibrium s o l u t i o n s  are

not necessasily e f f i c i en t  or conversely. 

- -~~~~~-~~~ - - — - - - — — = - ~~~~~~ — — -  ~~~—~-—~~~~---— —
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For ueU denote J’~~u)  = (J l
(u),...,J

N
(u)) and let

J = (3(u) J ueU }

This is a bounded subset of RN , and a sufficient cond ition for eff ic iency of a strategy

u~ is the existence of a non—negative vector AeR
N 
such that

(7.8) X~~J(u*) < X ’ ~ for all~~€J
Jff, (u )

(see diagram for N=2 ) . If J is convex , this
J

condition is also necessary. It follows from

results of Benes (2] (see the remarks follow— \ x
ing (4.20)) that convexity of the set

( f ( t ,x ,U ) ,  
_ _ _ _ _

implies convexity of J. Now ( 7 . 8 )  says that

u~ is optimal for the control problem of mini- J(u*)

mizing the weighted average cost~~~ Cu) = Z )
~J~~(u ) - 

_ _ _ _ _ _  - J1(u)

Fix u*6U, and as in §4 ,, let g ,i=l ,. ..,N, be

adapted processes such that

E (fc~~ds + ~~. ( x  ) f F  ] = J .~(u *)+f 
1
0 dW

u*
is 1 1 t 1 

0 
s s  s

For any other strategy ueu the right-hand side can be expressed , as in (4.11), as

J
1(u *) +f g’adv ? +f (H’(u) — H1(u*))ds

where

H1(u) = g1f ( t , x , u) + c .(t ,x,u)

Combining the remarks above with (4.16) shows that u~ is efficient if there edsts

XeRN such that -

(7.9) E X
1
H’(u~) < ~ X 1H~iv ) ,  a .e.  for all veU

under the convexity hypothesis, this condition is also necessary . 
-

u~ is a Nash equilibrium if, for each i , u”1 minimizes
J1

(u *l ,...,u*(1_ ,u,u*
(1
~~~~,...,u*

N
) over u€U.. Applying condition (4.16) we see

that this will be the case if

(7.10) H1(u~) < H1( v ) ,  a .e .  for all v€TJ., i=l,2,...,N

Thus u~ is an efficient equi 7~ibriwn if u~ minimizes each “private” Hamiltonian as in

(7.10) and also minimizes a “ social” Hamil tonian (7.9) formed as a certain wei ghted

average of these. Analogous conditions can be formulated under which u~ lies in the

core.

For ( t ,x ,p, u) 8 R~~>’~ 2 x R~~X U de f ine  the hlarniltoniazm;

H
1
(t,x ,P.,u) P~~’f(t~x~u) + c .(t,x,u)

We say that the 1~w1z cou’f~ t~~-i~ : holds if tb - re c-x i st -~ for  i=l , .  .. , N measurable  func t ions

u ? ( t , x ,p
11. . . ,p ) such tha t is a ~ r ( -di~~tah1c prc- -r~ s for  c~ cb fixed (p,u;= (p

1
.. . ~ , u )

- -~~~~~~~-—-- ——~~~~~~~~~~ -~~~~~~ -- -—~~~~~~~~~~~~~~~ -- -  - -~~~~~~~-~~~~--~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~-——~~~~~~~~~~ --~~~~~-~~~~~~~~~~~~~~~~~~~~~~~~~
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and

—i 0 0 —i 0 0 0 0H (t ?x .pi
~
u
l
(t
~
x,p),...,U

N
(t ,x?p)) < H (t , x , p . , u11. . . , u .  11v , u .  l , •

for all veu1, for each (t,x,p)€R
+ X1~ ‘<R~~. Uchida shows in [73] that the game has

~ Nash equilibrium point if the Nash condition ho lds . The proof is by a contradic-

tion argument using the original formulation of the results of §4 as given in Davis

and Varaiya [25]. Conditions under which the Nash condition holds are stated in [74).

Now consider the case N 2 , J
2
(U) = -31(u ) , so that the game is 2-person , 0-sum.

Then the core concept is ugatory , all strategies are efficient and an equilibrium is

a saddle point , i.e. a strategy u~ such that (denoting 
~~ 

= J) for all u€U

J (u *1, u2) < J (u *11u*
2
) < .3(u ~ ,u *2 ) 

-

In this case the relevant condition is the Isaacs ’ conditiOn: for each (t,x,p)er~~xc~~ i~~,

~ o2 ~~~~~ 
H1(t ,x ,p, u1,u2

) = u~~11 u~~ö~ 
H
1
(t,x,p,u1

,u2)

The main result is analogous to the above, namely that a saddle strategy u~ exists
if  the Iaa acs ’ condition holds . The argument , given by Elliott in [ 3 2 ] ,  ( 3 5 3 ,  is

constructive, along the lines leading to the existence result (4.20) for the control

problem. One considers first the situation where the minimizing player I announces

his strategy u
1
6U
1 
in advance. It is immediate from (4.20) that the maximizing

player II has an optima l reply u~~(u 1) to this. Now introduce the uppe r value function

— E 
0 ~f c1

(s,x,u1,u~ (u1))ds 
+

1 1 u
11 u2

(u
1
) t

An analysis of this somewhat similar to that of §4 shows that player I has a best

strategy , i.e. a strategy u~6U1, such that

- 0 0 0  . 0J (u 1,u2(u
1
)) =

~~~~ 1 
J ( u

1
,u
2

(u
1

) )

If it is player II who announces his strategy first, then we can define in an analo-

gous manner the lower value function tç. In general W > ç, but if the Isaacs’ con-

dition holds then = W~ and it follows that u* given by u*1 = u~ , u*
2 

= u~~(u~ ) is

a saddle strategy.

A somewhat more restricted version of this res’~lt was given by Varaiya in [75] ,

using a compactness—of—densities argument similar to that of Beries El] and Duncan and

Vara iya for the control problem. No results are available if the players do not have

complete observations . Some analogous results for a differential game including a

j ump process component are given in (49).

7.3 Optimal stopping and impulse control

In the conventional formulation of optimal stoppinj one is g iven a Markov process

on a state space S and a bounded continuous function ~ on S, and asked to f ind  a

Markov time 1 such that E 
~

(x t ) > E ~(x) for all x€S and Markov ti~ cs 0 . Let

t~,(x) = sup E
- x ~



F- ~~~~~~~

- - -  :~~~ J ’~~ ~~~~~~~~~~~

Then under some regularity conditions ~ is the “least excessive rnajorant” of 4) (i.e.,

~j (x ) > 4) (x)  and ~ (x t
) is a supermartingale) and the f i rs t  entrance time of x~ into the

set {x: 4 ) ( x )  = ~
j(x))is an optimal time. See [4 3 , and the references there . If we

defi ne X~ = 4 ) ( x
~

) and W~ = j ( x~ ) then t maximizes E X  and T = inf {t: X z
~
}. Thus tb

optimal stopping problem generalizes naturally as follows.

Let (~~,F , P) be a probability space and (F t
)
~~>o 

be an increasing , r ight—continuous,

completed family of sub-a-fields of F. Let T denote the set of F~_sto~ pin~ times and

X~ be a given positive, bounded optional process defined on (0,~~J . The optimal stopping

problem is then to find TeT such that

EXT = ~~~~~ EX
5

This problem is studied by Bismut and Skalli in [8 3 .  The simplest case occurs when

X~ satisfies the following hypothesis:

(7.11) Let {T ,T} be stopping times su6h that T~~ T or T +T. Then EX T~ EX T.

Criteria under which (7.11) holds are given in [8) . 
-

An essential role in this problem is played by the Snell envelope of X~ , intro-

duced by Mertens (62, Theorem 4). He shows that the set of all supermartingales
which majorize has a smallest member, denoted W~ , which is characterized by the

-

- property that for any stopping time T and a—field

E [W
T~

G] = e~s>s~p E [X
sIa]

Thus in par ticular for each fixed time t

= e~s>s~~ E [X 5 }F t ]

so that is the value function for the optimal stopping problem. Under condition

(7.11) is regular [63 , VII D33] and hence has the Meyer decomposition

W~ = M
~ 

- B
t

where M
t 
is a martingale and B

t a continuous increasing process with B
0
=O. Now define

= inf(t>0 :  Bt>O }

and

A = {(t,w): X
~~
(u) = W

t(W)
} 

-

The debut of A is the stopping time D~ = inf(t: (t,~~)€A). It is shown in (81 that

D~ < D~ and that:

(7.12) A stopping time’ T is opti~:al i f  and onl y if  the graph of T ic co~~~ :’~.l -
~~~~

A a n d T < D ~

In particular , both D~ and D~ are optimal.

This result implies an optimality criterion similar to (5.3 ): if T is optimal

then B
~~ r 0 so that W

tAT = is a rnartingalc , and conversely if is a mar—

L tingale then it is easily seen that T must s~ t i sfy  the conditionc of ( 7 . 3 2 ) .

~

- —
~~~~
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~~~
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Analoç~c-us results can be obtained for processes more general than those satis—

fying (7.11); the details are more involved and only c—optimal stopping times may

exist.
Impulse control: Space precludes any detailed discussion of this topic , but it

should be mentioned that a martingale treatment has been given by Lepeltier and !~1ar-

chal [59]. In the simplest type of problem one has a stochastic differential equation

- dxt = f ( x t )dt  + c(x
~

)dw t

A strategy 6 {T1.1~
Y }  consists of an increasing sequence of stopping times T~ and

a sequence of random variables Y such that iS F
T 
—measurable. The corresponding

trajectory is 4 defined by n

x~~~= x (given)

d4 = f ( x~~) +

te[T ,T In n +l
x = x  + YP T- nn n

The strategy cS is to be chosen to minimize

J(6) = E[ 
~ 
1
(T 1].) +f

c(x
Ô )ds)

A value function and conditions for optimality can be obtained along the lines of

§5. It is worth pointing out that the above system obviously has a Markovian f lavor

about it, and indeed it is shown in (59] that the value function is Markovian ( i . e . ,

at time t it depends on x~ only through x~ ) even though the controls ~ are merely

assumed to be non-anticipative. Some further remarks on this are given in the next

section .

7.4 Markovian systems

Let us return to the problem of §4 and suppose that the system equation and cost

are

dx
~ 

= f ( t ,xt ,u t )dt  + cT(t ,xt
)dw

~

J ( u ) = E
u
(J• c(t i x

~~
,u

~
)dt +

0
i.e., we have a diffusion model as considered in §2. In §4 the admissible controls

U were general non—anticipative functionals but here it seems clear that feedback

cont rols of the form u (t , x
~

) should be adequate. Denote by ‘-.‘ the set of mcasurab1’~
fu nctions U:  (0 , 13 X R ~ -

~~ U; then MCJJ if we iden ti fy  u€.~’ wi th  the process u~ = u ( t s x
~~

)
~

and x~ is a Markov process under measure P~ . Thus we can def ine  the .~z~~2Z ’~~- :
function wM (t , x ) as (with obvious notation)

WM
(t , x) = 

u~~/ 
E
~ ,.f  c(s ,x ,u )ds +

The conjecture then is that W M (t ,x t
) = a.e . (W t being defitwd as in §4) so that in 
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particul.~r

3( u )  = J (u)

This is easily established (see (2 5 ,  § 6] )  if it can be shown that wM satisfies a pri n-

ciple of optimality similar to (4 . 7 ). Howe ver this is not clear , as there is still ,

to my knowldge , no direct proof that the class V satisfies the c—lattic property. An

argument along the lines g iven in §5 f a i l s  because it involves “ mixing ” two controls

u1,u2€14 to form a control v by taking

fu l
(s ?x )I

A
S h u 2

(s ,x ) I
~ Ac

where s>t and AeF
~~
. But then v is of course no longer Markov. Thus the results

presented in §6 of [23] must be regarded as incomplete.

This problem has been dealt with in the case of controlled Markov jump processes

by Davis and Wan 126].  There it is possible to “mix ” two controls in a more ingenious

way which , however , uses the special structure of the sample paths very explicitly

and hence does not generalize to other problems. An alternative approach would be to

start with the value process W~ as previously defined and to show directly that

W~ = W ( t 1xt ) for some function ~~~. This has been done by Lepeltier and Marchal (59]

for impulse control problems but again the argument is very problem—specific.

My general conclusion from the above is that the direct Martingale approach is

not particularly well adapted to Markovian problems , and that more information can be

obtained from methods such as those of Bismut [5] which are specially tailored for

Markov processes.

8. CONCLUDING REMARKS

The successes of martingale methods in control are twofold: firstly the essence

of the optimality principle is revealed in the general formulation (5 .3 ) ,  and in

particular the fundamental difference between the situations of complete and of in-

complete observations is clearly brought out; and secondly , the power of the sub—

martingale decomposition provides , in effect , a weak form of differentiation which

enables minimum principles and ex istence of optimal controls to be established with

few technical restrictions. The drawbacks of the method are that it does not lead

naturally to computational techniques, and there are difficulties in handling Marko—

vian systems and problem formulations of the “separation principle ” typo.

He re are a few suggestions for further research.
(8.1) Obtain a more explicit characterization of the “ adjoint  process ” of

§4. Comparisons with deterministic optimal control theory and other forms of stochastic

minimum principle [6] , [53] suggest that it should satisf y some form of “adjoint  equa-

tion , ” yet l i t t le  is known about this unless the optimal control is smooth (44].

(8. 2) To my knowled ge martingale methods have not been applied seriously to

~



in f in i te—time problein-~ (see Kushncr (55] for some results using methods similar to

those of Bismut [5)).

(8.3) The partially-observable problem continues to elude a satisfactory

treatment. In particular there are no good existence theorems, and experience with

the separation theorem (~6) suggests that these may be hard to get. My feeling is

that the proper formulation of partially-observable problems must explicitly include

filtering, since it is the conditional distribution of the state given the observa—

t ions that is the true “state” of the system. A lot of information about nonlinear

filtering is available (60] but, again using the separation principle as a cautionary

tale , it is far from clear how to incorporate this into the martingale framework .

Possibly some entirely different approach , such as Nisio ’s nonlinear semigroup for-

mulation, will turn out to be more appropriate. See [20] for a step in this direction .
(8.4)  Show that the C-lattice property holds in some generality for Markovian

systems with Markov controls (cf .  §7 .4 ) .

(8.5) Give a constructive treatment of Uchida ’s result [73] on the existence

of Nash equilibiruin points in stochastic differential games.

(8.6) Is mutual absolute continuity of the measures P~ really necessary for

the existence result (4.20)? If not then better existence results could possibly be

obtained for problems such as controlled jump processes (~ 7.l) where mutual absolute

continuity does not arise so naturally.
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